

Macropol.	Wastewater	(WW)	FWD		FWD/WW
•	g/PE/d	%	g/PE/d	%	%
TS	290		67		23
TSS	90	31	42	63	47
TDS	200	69	25	37	12
Macropol	Wastewater		FWD		FWD/WW
	g/PE/d	%	g/PE/d	%	%
TVS	148		64		43
TVSS	67	45	42	65	62
TVDS	81	55	22	35	28
	d on sewer :load on sev		TVSS (62%	s)	

	Distribution (%)		Solid in V	WWTP(%)	Solid settled in sewer (%)	
	< 0.84 mm	> 0.84 mm	< 0.84 mm	> 0.84 mm		
Fruit	79	21	79	19.5	1.5	
Pasta- Bread	42.1	57.9	42.1	37.5	20.4	
Vegetables	56.1	43.9	56.1	36.2	7.7	
Meat	33.4	66.6	33.4	57.7	8.9	
Fish	63.9	36.1	63.9	26.8	9.3	
Food waste	50.1	49.9	50.1	33.1	16.8	
FWD effluent		termine pr 7% of TS ca		sewer beca	nuse only	
					mt Policy & Practice "	

	WW – FW	D MASS O	VERLOAD	EVALUAT	ION	
V	vw	FW	7	Over load		
		22 – 25	TS%			
290	gTS/PE/d	66 – 76	gTS/PE/d	23%		
70 – 90	gTSS/PE/d	42	gTSS/PE/d	52%		
120 (COD/PE/d	86 - 97	COD/PE/d	75%		
12	gN/PE/d	3	gN/PE/d	25%		
3.5	gP/PE/d	1,5	gP/PE/d	43%	EU	
1.2	gP/PE/d	1,5	gP/PE/d		IT	
cted to nd P (in	the sewer b EU) of 50%	wer as a way nas the maxir o, Nitrogen ons remains t	num impac of 25%, w	t to increas	e COL	of'

WWTP performances

	N balance					
Management	Ntot in	Ntot out	E%d	E%n	E%dd	E%nn
	KgNtot/d	KgNtot/d	%	%	%	%
No FWD	3.2	2	48%	78%	61%	78%
No FWD management upgraded	1.7	1.2	31%	78%	39%	78%
FWD management upgraded	2.0	1.1	42%	89%	47%	90%
FWD AC process	5.2	0.9	83%	87%	93%	88%

AMDEA FWD Group Round Table «The Role of Food Waste Disposers in Waste Management Policy & Practice "London 15 October 2013

WWTP energy consumption						
	Energy	Energy cost	Energy saving			
	kWh/y	€/anno	%			
No FWD	42,924	4,877	0%			
No FWD modified management	33,945	3,857	21%			
FWD modified management	33,945	3,857	21%			
FWD and AC process	27,916	3,172	35%			

AMDEA FWD Group Round Table «The Role of Food Waste Disposers in Waste Management Policy & Practice " London 15 October 2013

CONCLUSIONS

FWD is a feasible alternative to the collection, transportation and treatment of $\,$ SS OFMSW because it:

- produces an effluent free of waste as plastic, glass, paper, etc., but with organic matter (mainly suspended but very fine);
- has an irrelevant hydraulic impact on sewer;
- determines a relevant mass overloading of mainly carbon and solid, but not of nutrients (P and N), therefore it has a very high denitrifying potential;
- has no enough time to remove organic substances in sewer, but it has enough time to produce RBCOD: for this reason, FWD can enhance the nutrients removal in WWTPs, especially in small communities;
- FWD-sewer-WWTP line is economically sustainable in comparison to the collection, transportation and treatment of OFMSW, where Solid Waste and Water are managed by different authorities/companies: costs for sewer and WWTP management must be considered!

AMDEA FWD Group Round Table «The Role of Food Waste Disposers in Waste Management Policy & Practice " London 15 October 2013

References

Bolzonella D., Pavan P., Battistoni P., Cecchi F. (2003). Garbage grinder: a friendly technology for the environment. Environmental Technology, 24(3), 349-359.

Battistoni P., Fatone F., Passacantando D., Bolzonella D. (2007). Application of food waste disposers and alternate cycles process in small decentralized towns: a case study. Water Research, 41(4), 893-903.

AMDEA FWD Group Round Table «The Role of Food Waste Disposers in Waste Management Policy & Practice "London 15 October 2013

